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SYSTEMS FOR TREATING SKIN LAXITY

INCORPORATION BY REFERENCE TO ANY
PRIORITY APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 14/169,709, which is a continuation of U.S.
patent application Ser. No. 13/230,498, issued as U.S. Pat.
No. 8,641,622, which is a continuation of U.S. patent
application Ser. No. 11/163,150, issued as U.S. Pat. No.
8,066,641, which claims the benefit of priority to U.S.
Provisional Application No. 60/617,295, each of which is
incorporated in its entirety by reference herein. Any and all
applications for which a foreign or domestic priority claim
is identified in the Application Data Sheet as filed with the
present application are hereby incorporated by reference
under 37 CFR 1.57.

BACKGROUND

The present invention relates to ultrasound therapy and
imaging systems, and in particular to a method and system
for treating photoaged tissue.

Photoaging of human skin is a complex response due to
inflammation, oxidative injury, cellular and extracellular
changes induced by decades of sunlight exposure. UV
wavelengths are thought to be mainly responsible. Both of
the primary skin layers, epidermis and dermis, are affected.
Epidermal photoaging includes pigmentary lesions called
ephilides (freckles) and solar lentigines (larger pigmented
spots), plus precancerous clonal lesions of keratinocytes
called actinic keratoses. Thermal destruction of part or all of
the epidermis, the outermost cellular layer of skin about 0.1
mm thick, is an effective treatment for epidermal photoag-
ing. For example, lasers that vaporize epidermis are highly
effective in a treatment called laser resurfacing. However
laser resurfacing creates a significant skin wound with risk
of infection, and prolonged healing. Dermal changes of
photoaging include solar elastosis (an accumulation of
abnormally-formed elastin fibers in the upper reticular layer
of the dermis), laxity, loss of elasticity, fine and coarse
wrinkles. Laser resurfacing to a depth below the dermoepi-
dermal junction can be highly effective for improving der-
mal photoaging, through a process of stimulated wound
healing. Deep chemical peels, dermabrasion and other meth-
ods of destruction of epidermis and/or dermis are also
effective, and also produce a significant open skin wound
with risk of infection and delayed healing.

Patterns of stimulated thermal damage to epidermis and/
or dermis are also effective for treatment of photoaging.
Recently, “fractional photothermolysis” using mid-infrared
lasers to produce a microscopic array of thermal injury
zones that include both epidermis and dermis was reported
to be effective and well-tolerated for treatment of photoag-
ing (D. Manstein et al. “Fractional Photothermolysis: a new
concept for cutaneous remodeling using microscopic pat-
terns of thermal injury.” Lasers Surg Med 34:426-438,
2004). A primary advantage of fractional photothermolysis
is that each zone of thermal injury is smaller than can be
easily seen with the unaided eye, and surrounded by a zone
of healthy tissue that initiates a rapid healing response. As
described Manstein, the epidermis is stimulated to heal
rapidly and without creating an open wound. The micro-
scopic zones of thermally injured epidermis slough harm-
lessly from the skin surface after several days to several
weeks, leaving a rejuvenated epidermis with less photoaging
changes. Repeat treatments, which are well tolerated, can be

20

25

35

40

45

55

2

performed until a desired result is obtained. The microscopic
zones of thermal injury with fractional photothermolysis
extend well into the dermis, as well. Dermis does not heal as
rapidly as epidermis, in general. Over weeks to months
following treatment, some of the abnormal dermis due to
photoaging is remodeled, however, leading to improvement
in laxity, wrinkles and skin texture.

Fractional photothermolysis (FP) is intrinsically limited
to regions of approximately the upper 1-millimeter of skin.
The basic concept of producing well-controlled arrays of
thermal injury is therefore limited with fractional photother-
molysis, to superficial aspects of photoaging. Aging, which
also causes laxity of the skin, and photoaging involve deeper
layers of the dermis. Solar elastosis can extend throughout
the dermis, to approximately 3 mm deep or more. Laxity and
loss of elasticity due to aging are bulk problems of the
dermis.

A fundamental requirement for producing arrays of small
thermal injury zones using a source of radiant energy that
propagates and is absorbed within tissue, is that the source
of radiant energy be capable of being adequately delivered
to the tissue depth for which the array is desired. Near the
skin surface, light can be used, as in fractional photother-
molysis. However, light that propagates more than about 1
mm through skin has been multiplied scattered, and can no
longer be focused or delivered.

SUMMARY

A method and system for ultrasound treatment of pho-
toaged tissue are provided. An exemplary method and sys-
tem are configured for first, ultrasound imaging of the region
of interest for localization of the treatment area, second,
delivery of ultrasound energy at a depth and pattern to
achieve the desired therapeutic effects, and third to monitor
the treatment area during and after therapy to assess the
results and/or provide feedback. The exemplary treatment
method and system can be configured for producing arrays
of sub-millimeter and larger zones of thermal ablation to
treat the epidermal, superficial dermal, mid-dermal and deep
dermal components of photoaged tissue.

In accordance with an exemplary embodiment, the treat-
ment method and system use focused, unfocused, and/or
defocused ultrasound for treatment of epidermal, superficial
dermal, dermal, mid-dermal, and/or deep dermal compo-
nents of photoaged tissue by adjusting the strength, depth,
and/or type of focusing, energy levels and timing cadence.
For example, focused ultrasound can be used to create
precise arrays of microscopic thermal damage much deeper
into the skin or even into subcutaneous structures. Detection
of changes in the reflection of ultrasound can be used for
feedback control to detect a desired effect on the tissue and
used to control the exposure intensity, time, and/or position.

In accordance with an exemplary embodiment, an exem-
plary treatment system comprises an imaging/therapy probe,
a control system and display system. The imaging/therapy
probe can comprise various probe and/or transducer con-
figurations. For example, the probe can be configured for a
combined dual-mode imaging/therapy transducer, coupled
or co-housed imaging/therapy transducers, a separate
therapy probe and imaging probe, or a single therapy probe.
The control system and display system can also comprise
various configurations for controlling probe and system
functionality, including for example a microprocessor with
software and a plurality of input/output and communication
devices, a system for controlling electronic and/or mechani-
cal scanning and/or multiplexing of transducers, a system
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for power delivery, systems for monitoring, systems for
sensing the spatial position of the probe and/or temporal
parameters of the transducers, and systems for handling user
input and recording treatment input and results, among
others.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter of the invention is particularly pointed
out in the concluding portion of the specification. The
invention, however, both as to organization and method of
operation, may best be understood by reference to the
following description taken in conjunction with the accom-
panying drawing figures, in which like parts may be referred
to by like numerals:

FIG. 1 illustrates a block diagram of a treatment system
in accordance with an exemplary embodiment of the present
invention;

FIGS. 2A-2D illustrates a schematic diagram of an ultra-
sound treatment system including therapy, imaging and/or
monitoring and treating photoaged tissue in accordance with
various exemplary embodiments of the present invention;

FIGS. 3A and 3B illustrate block diagrams of an exem-
plary control system in accordance with exemplary embodi-
ments of the present invention;

FIGS. 4A and 4B illustrate block diagrams of an exem-
plary probe system in accordance with exemplary embodi-
ments of the present invention;

FIG. 5 illustrates a cross-sectional diagram of an exem-
plary transducer in accordance with an exemplary embodi-
ment of the present invention;

FIGS. 6A and 6B illustrate cross-sectional diagrams of an
exemplary transducer in accordance with exemplary
embodiments of the present invention;

FIG. 7 illustrates exemplary transducer configurations for
ultrasound treatment in accordance with various exemplary
embodiments of the present invention;

FIGS. 8A and 8B illustrate cross-sectional diagrams of an
exemplary transducer in accordance with another exemplary
embodiment of the present invention;

FIG. 9 illustrates an exemplary transducer configured as
a two-dimensional, array for ultrasound treatment in accor-
dance with an exemplary embodiment of the present inven-
tion;

FIGS. 10A-10F illustrate cross-sectional diagrams of
exemplary transducers in accordance with other exemplary
embodiments of the present invention;

FIG. 11 illustrates a schematic diagram of an acoustic
coupling and cooling system in accordance with an exem-
plary embodiment of the present invention;

FIG. 12 illustrates a block diagram of an ultrasound
treatment system combined with additional subsystems and
methods of treatment monitoring and/or treatment imaging
as well as a secondary treatment subsystem in accordance
with an exemplary embodiment of the present invention; and

FIG. 13 illustrates a schematic diagram with imaging,
therapy, or monitoring being provided with one or more
active or passive oral inserts in accordance with an exem-
plary embodiment of the present invention.

DETAILED DESCRIPTION

The present invention may be described herein in terms of
various functional components and processing steps. It
should be appreciated that such components and steps may
be realized by any number of hardware components config-
ured to perform the specified functions. For example, the
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present invention may employ various medical treatment
devices, visual imaging and display devices, input terminals
and the like, which may carry out a variety of functions
under the control of one or more control systems or other
control devices. In addition, the present invention may be
practiced in any number of medical contexts and that the
exemplary embodiments relating to a method and system for
treating photoaged tissue as described herein are merely
indicative of exemplary applications for the invention. For
example, the principles, features and methods discussed may
be applied to any medical application. Further, various
aspects of the present invention may be suitably applied to
other applications.

In accordance with various aspects of the present inven-
tion, a method and system for treating photoaged tissue are
provided. For example, in accordance with an exemplary
embodiment, with reference to FIG. 1, an exemplary treat-
ment system 100 configured to treat a region of interest
(ROI) 106 comprises a control system 102, an imaging/
therapy probe with acoustic coupling 104, and a display
system 108. Control system 102 and display 108 can com-
prise various configurations for controlling functionality of
probe 104 and system 100, including for example a micro-
processor with software and a plurality of input/output and
communication devices, a system for controlling electronic
and/or mechanical scanning and/or multiplexing of trans-
ducers, a system for power delivery, systems for monitoring,
systems for sensing the spatial position of the probe and/or
temporal parameters of the transducers, and/or systems for
handling user input and recording treatment input and
results, among others. Imaging/therapy probe 104 can com-
prise various probe and/or transducer configurations. For
example, probe 104 can be configured for a combined
dual-mode imaging/therapy transducer, coupled or
co-housed imaging/therapy transducers, a separate therapy
probe and separate imaging probe, or a single therapy probe.
In accordance with exemplary embodiments, imaging trans-
ducers may operate at frequencies from approximately 2 to
75 MHz or more, while therapy energy can be delivered at
frequencies from approximately 2 to 50 MHz, with 2 MHz
to 25 MHz being typical.

For the treatment of photoaged tissue, it is desirable to be
able to produce well controlled arrays of microscopic zones
of thermal injury not only near the surface of skin, but in the
mid-dermis, and/or in the deep dermis. Thermal ablation of
dermis at temperatures greater than about 60° C., capable of
producing denaturation of tissue, is also desirable in such
arrays of thermal lesions. Shrinkage of dermis due to ther-
mal action results from tightening of the skin.

In contrast to optical or RF approaches, ultrasound energy
propagates as a wave with relatively little scattering, over
depths up to many centimeters in tissue depending on the
ultrasound frequency. The focal spot size achievable with
any propagating wave energy, depends on wavelength.
Ultrasound wavelength is equal to the acoustic velocity
divided by the ultrasound frequency. Attenuation (absorp-
tion, mainly) of ultrasound by tissue also depends on fre-
quency.

In accordance with an exemplary embodiment, the use of
focused, unfocused, or defocused ultrasound for treatment of
epidermal, superficial dermal, dermal, middermal, and deep
dermal components of photoaged tissue through adjustment
of the strength, depth, and type of focusing, energy levels
and timing cadence. For example, focused ultrasound can be
used to create precise arrays of microscopic thermal ablation
zones which have several advantages over fractional pho-
tothermolysis (FP). At high frequency and with superficial
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focusing or diffraction pattern, ultrasound ablation can
mimic FP but utilize a simpler ablation device. Unlike
fractional photothermolysis, ultrasound can produce an
array of ablation zones much deeper into the skin or even
into subcutaneous structures. Detection of changes in the
reflection of ultrasound can be used for feedback control to
detect a desired effect on the tissue and used to control the
exposure intensity, time, and/or position.

To further illustrate the use of ultrasound for the treatment
of photoaged tissue, with reference to FIG. 2A, an exem-
plary method and system are configured for initially imaging
a region 222 of a region of interest 206 and displaying that
region 224 during the localization of the treatment area and
surrounding structures. After localization, delivery of ultra-
sound energy 220 at a depth, distribution, timing, and energy
level to achieve the desired therapeutic effect of thermal
ablation to treat an epidermis layer 212, superficial dermis
layer 214, mid-dermis layer 216, and/or deep dermis layer
218 can be provided. Before, during, and after therapy, i.e.,
before, during, and after the delivery of ultrasound energy
220, exemplary method and system 200 can suitably moni-
tor the treatment area and surrounding structures to plan and
assess the results and/or provide feedback to control system
202 and/or a system user.

While an imaging function may be configured within
control system 202 to facilitate imaging a region of interest,
in accordance with another exemplary embodiment, an
exemplary treatment system 200 may also be configured for
therapy only or therapy and monitoring, without imaging
functions. In such a case prior known depth of the region of
interest, approximately 0 to 5 mm or less, is employed to
achieve treatment zones in photoaged skin.

Probe 204 and/or transducers within can be mechanically
and/or electronically scanned in a direction 226 to place
treatment zones 260 over an extended area, such as a line to
generate a matrix of closely spaced treatment spots. Treat-
ment depth 220 can be adjusted between a range of approxi-
mately 0 to 5 mm, or otherwise until the depth of the deep
dermis. Treatment may be confined to a fixed depth or a few
discrete depths, or can be adjustment limited to a fine range,
e.g. from approximately between 0 to 5 mm or the greatest
depth of the deep dermis, or can be dynamically adjusted
during treatment, to the treat region of interest 206 that lies
above subcutaneous fat region 250.

In accordance with another exemplary embodiment of the
present invention, with reference to FIG. 2B, a treated zone
260 may extend throughout regions of the dermis, and may
even extend to the epidermis, 262. In addition, as a treated
zone increases in depth its cross section may increase from
small size 264 (sub millimeter) in a shallow region near or
at the epidermis, to medium size 266 (sub millimeter to
millimeter sized) in a middle zone near or at the mid dermis,
to large size 268 (millimeter sized) in deep zones near or at
the deep dermis. Furthermore a. single treated zone can have
a shape expanding in cross section with depth, and/or be
composed of the fusion of several smaller treatment zones.
Spacing of treatment zones can be on the order of the
treatment zone size. The ultrasound beam can be spatially
and/or temporally controlled by changing the position of the
transducer, its frequency, treatment depth, drive amplitude,
and timing via the control system. For example, the ultra-
sound beam can be controlled as set forth in U.S. patent
application Ser. No. 11/163,148, filed Oct. 6, 2005, and
entitled METHOD AND SYSTEM FOR CONTROLLED
THERMAL INJURY OF HUMAN SUPERFICIAL TIS-
SUE, and hereby incorporated by reference.
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In accordance with another exemplary embodiment of the
present invention, with reference to FIG. 2C, an exemplary
treatment method and system 200 may be configured to
monitor the temperature profile or other tissue parameters of
region of interest 206, such as attenuation or speed of sound
of the treatment region and suitably adjust the spatial and/or
temporal characteristics and energy levels of the ultrasound
therapy transducer. The results of such monitoring tech-
niques may be indicated on display 208, such as through
display of one-, two-, or three-dimensional images of moni-
toring results 270, or may comprise an indicator 272, such
as a success, fail and/or completed/done type of indication,
or combinations thereof. Additional treatment monitoring
methods may be based on one or more of temperature, video,
profilometry, strain imaging and/or gauges or any other
suitable sensing method.

In accordance with another exemplary embodiment, with
reference to FIG. 20, an expanded region of interest 280 can
suitably include a combination of tissues, such as subcuta-
neous fat/adipose tissue 250. A combination of such tissues
includes at least one of epidermis 212, superficial dermis
214, mid dermis 216, or deep dermis 218, in combination
with at least one of muscle tissue, adipose tissue, or other
tissues useful for treatment. For example, treatment 260 of
superficial dermis may be performed in combination with
treatment 220 of subcutaneous fat 250 by suitable adjust-
ment of the spatial and temporal parameters of transducers
in probe 204.

An exemplary control system 202 and display system 208
may be configured in various manners for controlling probe
and system functionality for providing the various exem-
plary treatment methods illustrated above. For example,
with reference to FIGS. 3A and 3B, in accordance with
exemplary embodiments, an exemplary control system 300
can be configured for coordination and control of the entire
therapeutic treatment process for producing arrays of sub-
millimeter and larger zones of thermal ablation to treat the
epidermal, superficial dermal, mid-dermal and deep dermal
components of photoaged tissue. For example, control sys-
tem 300 can suitably comprise power source components
302, sensing and monitoring components 304, cooling and
coupling controls 306, and/or processing and control logic
components 308. Control system 300 can be configured and
optimized in a variety of ways with more or less subsystems
and components to implement the therapeutic system for
controlled thermal injury of photoaged tissue, and the
embodiments in FIGS. 3A and 3B are merely for illustration
purposes.

For example, for power sourcing components 302, control
system 300 can comprise one or more direct current (DC)
power supplies 303 configured to provide electrical energy
for entire control system 300, including power required by
a transducer electronic amplifier/driver 312. A DC current
sense device 305 can also be provided to confirm the level
of power going into amplifiers/drivers 312 for safety and
monitoring purposes.

Amplifiers/drivers 312 can comprise multi-channel or
single channel power amplifiers and/or drivers. In accor-
dance with an exemplary embodiment for transducer array
configurations, amplifiers/drivers 312 can also be configured
with a beamformer to facilitate array focusing. An exem-
plary beamformer can be electrically excited by an oscilla-
tor/digitally controlled waveform synthesizer 310 with
related switching logic.

The power sourcing components can also include various
filtering configurations 314. For example, switchable har-
monic filters and/or matching may be used at the output of
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amplifier/driver 312 to increase the drive efficiency and
effectiveness. Power detection components 316 may also be
included to confirm appropriate operation and calibration.
For example, electric power and other energy detection
components 316 may be used to monitor the amount of
power going to an exemplary probe system.

Various sensing and monitoring components 304 may
also be suitably implemented within control system 300. For
example, in accordance with an exemplary embodiment,
monitoring, sensing and interface control components 324
may be configured to operate with various motion detection
systems implemented within transducer probe 204 to receive
and process information such as acoustic or other spatial and
temporal information from a region of interest. Sensing and
monitoring components can also include various controls,
interfacing and switches 309 and/or power detectors 316.
Such sensing and monitoring components 304 can facilitate
open-loop and/or closed-loop feedback systems within treat-
ment system 200.

Cooling/coupling control systems 306 may be provided to
remove waste heat from an exemplary probe 204, provide a
controlled temperature at the superficial tissue interface and
deeper into tissue, and/or provide acoustic coupling from
transducer probe 204 to region-of-interest 206. Such cool-
ing/coupling control systems 306 can also be configured to
operate in both open-loop and/or closed-loop feedback
arrangements with various coupling and feedback compo-
nents.

Processing and control logic components 308 can com-
prise various system processors and digital control logic
307, such as one or more of microcontrollers, microproces-
sors, field-programmable gate arrays (FPGAs), computer
boards, and associated components, including firmware and
control software 326, which interfaces to user controls and
interfacing circuits as well as input/output circuits and
systems for communications, displays, interfacing, storage,
documentation, and other useful functions. System software
and firmware 326 controls all initialization, timing, level
setting, monitoring, safety monitoring, and all other system
functions required to accomplish user-defined treatment
objectives. Further, various control switches 308 can also be
suitably configured to control operation.

An exemplary transducer probe 204 can also be config-
ured in various manners and comprise a number of reusable
and/or disposable components and parts in various embodi-
ments to facilitate its operation. For example, transducer
probe 204 can be configured within any type of transducer
probe housing or arrangement for facilitating the coupling of
transducer to a tissue interface, with such housing compris-
ing various shapes, contours and configurations. Transducer
probe 204 can comprise any type of matching, such as for
example, electric matching, which may be electrically swit-
chable; multiplexer circuits and/or aperture/element selec-
tion circuits; and/or probe identification devices, to certify
probe handle, electric matching, transducer usage history
and calibration, such as one or more serial EEPROM
(memories). Transducer probe 204 may also comprise cables
and connectors; motion mechanisms, motion sensors and
encoders; thermal monitoring sensors; and/or user control
and status related switches, and indicators such as LEDs. For
example, a motion mechanism in probe 204 may be used to
controllably create multiple lesions, or sensing of probe
motion itself may be used to controllably create multiple
lesions and/or stop creation of lesions, e.g. for safety reasons
if probe 204 is suddenly jerked or is dropped. In addition, an
external motion encoder arm may be used to hold the probe
during use, whereby the spatial position and attitude of

40

45

55

8

probe 104 is sent to the control system to help controllably
create lesions. Furthermore, other sensing functionality such
as profilometers or other imaging modalities may be inte-
grated into the probe in accordance with various exemplary
embodiments.

With reference to FIGS. 4A and 4B, in accordance with an
exemplary embodiment, a transducer probe 400 can com-
prise a control interface 402, a transducer 404, coupling
components 406, and monitoring/sensing components 408,
and/or motion mechanism 410. However, transducer probe
400 can be configured and optimized in a variety of ways
with more or less parts and components to provide ultra-
sound energy for controlled thermal injury of photoaged
tissue, and the embodiments in FIGS. 4A and 4B are merely
for illustration purposes.

Control interface 402 is configured for interfacing with
control system 300 to facilitate control of transducer probe
400. Control interface components 402 can comprise mul-
tiplexer/aperture select 424, switchable electric matching
networks 426, serial EEPROMs and/or other processing
components and matching and probe usage information 430
and interface connectors 432.

Coupling components 406 can comprise various devices
to facilitate coupling of transducer probe 400 to a region of
interest. For example, coupling components 406 can com-
prise cooling and acoustic coupling system 420 configured
for acoustic coupling of ultrasound energy and signals.
Acoustic cooling/coupling system 420 with possible con-
nections such as manifolds may be utilized to couple sound
into the region-of-interest, control temperature at the inter-
face and deeper into tissue, provide liquid-filled lens focus-
ing, and/or to remove transducer waste heat. Coupling
system 420 may facilitate such coupling through use of
various coupling mediums, including air and other gases,
water and other fluids, gels, solids, and/or any combination
thereof, or any other medium that allows for signals to be
transmitted between transducer active elements 412 and a
region of interest. In addition to providing a coupling
function, in accordance with an exemplary embodiment,
coupling system 420 can also be configured for providing
temperature control during the treatment application. For
example, coupling system 420 can be configured for con-
trolled cooling of an interface surface or deeper region
between transducer probe 400 and a region of interest and
beyond by suitably controlling the temperature of the cou-
pling medium. The suitable temperature for such coupling
medium can be achieved in various manners, and utilize
various feedback systems, such as thermocouples, thermis-
tors or any other device or system configured for tempera-
ture measurement of a coupling medium. Such controlled
cooling can be configured to further facilitate spatial and/or
thermal energy delivery control of transducer probe 400.

In accordance with an exemplary embodiment, with addi-
tional reference to FIG. 11, acoustic coupling and cooling
1140 can be provided to acoustically couple energy and
imaging signals from transducer probe 1104 to and from the
region of interest 1102, to provide thermal control at the
probe to region-of-interest interface 1110 and deeper into
tissue, and to remove potential waste heat from the trans-
ducer probe at region 1144. Temperature monitoring can be
provided at the coupling interface via a thermal sensor 1146
to provide a mechanism of temperature measurement 1148
and control via control system 1106 and a thermal control
system 1142. Thermal control may consist of passive cool-
ing such as via heat sinks or natural conduction and con-
vection or via active cooling such as with peltier thermo-
electric coolers, refrigerants, or fluid-based systems
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comprised of pump, fluid reservoir, bubble detection, flow
sensor, flow channels/tubing 1144 and thermal control 1142.

With continued reference to FIG. 4, monitoring and
sensing components 408 can comprise various motion and/
or position sensors 416, temperature monitoring sensors
418, user control and feedback switches 414 and other like
components for facilitating control by control system 300,
e.g., to facilitate spatial and/or temporal control through
open-loop and closed-loop feedback arrangements that
monitor various spatial and temporal characteristics.

Motion mechanism 410 can comprise manual operation,
mechanical arrangements, or some combination thereof. For
example, a motion mechanism 422 can be suitably con-
trolled by control system 300, such as through the use of
accelerometers, encoders or other position/orientation
devices 416 to determine and enable movement and posi-
tions of transducer probe 400. Linear, rotational or variable
movement can be facilitated, e.g., those depending on the
treatment application and tissue contour surface.

Transducer 404 can comprise one or more transducers
configured for treating of SMAS layers and targeted regions.
Transducer 404 can also comprise one or more transduction
elements and/or lenses 412. The transduction elements can
comprise a piezoelectrically active material, such as lead
zirconante titanate (PZT), or any other piezoelectrically
active material, such as a piezoelectric ceramic, crystal,
plastic, and/or composite materials, as well as lithium nio-
bate, lead titanate, barium titanate, and/or lead metaniobate.
In addition to, or instead of, a piezoelectrically active
material, transducer 404 can comprise any other materials
configured for generating radiation and/or acoustical energy.
Transducer 404 can also comprise one or more matching
layers configured along with the transduction element such
as coupled to the piezoelectrically active material. Acoustic
matching layers and/or damping may be employed as nec-
essary to achieve the desired electroacoustic response.

In accordance with an exemplary embodiment, the thick-
ness of the transduction element of transducer 404 can be
configured to be uniform. That is, a transduction element
412 can be configured to have a thickness that is substan-
tially the same throughout. In accordance with another
exemplary embodiment, the thickness of a transduction
element 412 can also be configured to be variable. For
example, transduction element(s) 412 of transducer 404 can
be configured to have a first thickness selected to provide a
center operating frequency of approximately 2 kHz to 75
MHz, such as for imaging applications. Transduction ele-
ment 412 can also be configured with a second thickness
selected to provide a center operating frequency of approxi-
mately 2 to 50 MHz, and typically between 2 MHz and 25
MHz for therapy application. Transducer 404 can be con-
figured as a single broadband transducer excited with at least
two or more frequencies to provide an adequate output for
generating a desired response. Transducer 404 can also be
configured as two or more individual transducers, wherein
each transducer comprises one or more transduction ele-
ment. The thickness of the transduction elements can be
configured to provide center-operating frequencies in a
desired treatment range.

Transducer 404 may be composed of one or more indi-
vidual transducers in any combination of focused, planar, or
unfocused single-element, multi-element, or array transduc-
ers, including 1-D, 2-D, and annular arrays; linear, curvi-
linear, sector, or spherical arrays; spherically, cylindrically,
and/or electronically focused, defocused, and/or lensed
sources. For example, with reference to an exemplary
embodiment depicted in FIG. 5, transducer 500 can be
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configured as an acoustic array 502 to facilitate phase
focusing. That is, transducer 500 can be configured as an
array of electronic apertures that may be operated by a
variety of phases via variable electronic time delays. By the
term “operated,” the electronic apertures of transducer 500
may be manipulated, driven, used, and/or configured to
produce and/or deliver an energy beam corresponding to the
phase variation caused by the electronic time delay. For
example, these phase variations can be used to deliver
defocused beams 508, planar beams 504, and/or focused
beams 506, each of which may be used in combination to
achieve different physiological effects in a region of interest
510. Transducer 500 may additionally comprise any soft-
ware and/or other hardware for generating, producing and or
driving a phased aperture array with one or more electronic
time delays.

Transducer 500 can also be configured to provide focused
treatment to one or more regions of interest using various
frequencies. In order to provide focused treatment, trans-
ducer 500 can be configured with one or more variable depth
devices to facilitate treatment. For example, transducer 500
may be configured with variable depth devices disclosed in
U.S. patent application Ser. No. 10/944,500, entitled “Sys-
tem and Method for Variable Depth Ultrasound”, filed on
Sep. 16, 2004, having at least one common inventor and a
common Assignee as the present application, and incorpo-
rated herein by reference. In addition, transducer 500 can
also be configured to treat one or more additional ROI 510
through the enabling of sub-harmonics or pulseecho imag-
ing, as disclosed in U.S. patent application Ser. No. 10/944,
499, entitled “Method and System for Ultrasound Treatment
with a Multi-directional Transducer,” filed on Sep. 16, 2004,
having at least one common inventor and a common
Assignee as the present application, and also incorporated
herein by reference.

Moreover, any variety of mechanical lenses or variable
focus lenses, e.g. liquid-filled lenses, may also be used to
focus and or defocus the sound field. For example, with
reference to exemplary embodiments depicted in FIGS. 6A
and 6B, transducer 600 may also be configured with an
electronic focusing array 604 in combination with one or
more transduction elements 606 to facilitate increased flex-
ibility in treating ROI 610. Array 604 may be configured in
a manner similar to transducer 502. That is, array 604 can be
configured as an array of electronic apertures that may be
operated by a variety of phases via variable electronic time
delays, for example, T1, T2 . . . Tj. By the term “operated,”
the electronic apertures of array 604 may be manipulated,
driven, used, and/or configured to produce and/or deliver
energy in a manner corresponding to the phase variation
caused by the electronic time delay. For example, these
phase variations can be used to deliver defocused beams,
planar beams, and/or focused beams, each of which may be
used in combination to achieve different physiological
effects in ROI 610.

Transduction elements 606 may be configured to be
concave, convex, and/or planar. For example, in an exem-
plary embodiment depicted in FIG. 6A, transduction ele-
ments 606 are configured to be concave in order to provide
focused energy for treatment of ROI 610. Additional
embodiments are disclosed in U.S. patent application Ser.
No. 10/944,500, entitled “Variable Depth Transducer Sys-
tem and Method”, and again incorporated herein by refer-
ence.

In another exemplary embodiment, depicted in FIG. 68,
transduction elements 606 can be configured to be substan-
tially flat in order to provide substantially uniform energy to
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ROI 610. While FIGS. 6A and 68 depict exemplary embodi-
ments with transduction elements 604 configured as concave
and substantially flat, respectively, transduction elements
604 can be configured to be concave, convex, and/or sub-
stantially flat. In addition, transduction elements 604 can be
configured to be any combination of concave, convex,
and/or substantially flat structures. For example, a first
transduction element can be configured to be concave, while
a second transduction element can be configured to be
substantially flat.

With reference to FIGS. 8 A and 8B, transducer 404 can be
configured as single-element arrays, wherein a single-cle-
ment 802, e.g., a transduction element of various structures
and materials, can be configured with a plurality of masks
804, such masks comprising ceramic, metal or any other
material or structure for masking or altering energy distri-
bution from element 802, creating an array of energy dis-
tributions 808. Masks 804 can be coupled directly to element
802 or separated by a standoff 806, such as any suitably solid
or liquid material.

An exemplary transducer 404 can also be configured as an
annular array to provide planar, focused and/or defocused
acoustical energy. For example, with reference to FIGS. 10A
and 10B, in accordance with an exemplary embodiment, an
annular array 1000 can comprise a plurality of rings 1012,
1014, 1016 to N. Rings 1012, 1014, 1016 to N can be
mechanically and electrically isolated into a set of individual
elements, and can create planar, focused, or defocused
waves. For example, such waves can be centered on-axis,
such as by methods of adjusting corresponding transmit
and/or receive delays, T1, T2, T3 . . . TN. An electronic
focus can be suitably moved along various depth positions,
and can enable variable strength or beam tightness, while an
electronic defocus can have varying amounts of defocusing.
In accordance with an exemplary embodiment, a lens and/or
convex or concave shaped annular array 1000 can also be
provided to aid focusing or defocusing such that any time
differential delays can be reduced. Movement of annular
array 800 in one, two or three-dimensions, or along any path,
such as through use of probes and/or any conventional
robotic arm mechanisms, may be implemented to scan
and/or treat a volume or any corresponding space within a
region of interest.

Transducer 404 can also be configured in other annular or
non-array configurations for imaging/therapy functions. For
example, with reference to FIGS. 10C-10F, a transducer can
comprise an imaging element 1012 configured with therapy
element(s) 1014. Elements 1012 and 1014 can comprise a
single-transduction element, e.g., a combined imaging/trans-
ducer element, or separate clements, can be electrically
isolated 1022 within the same transduction element or
between separate imaging and therapy elements, and/or can
comprise standoff 1024 or other matching layers, or any
combination thereof. For example, with particular reference
to FIG. 10F, a transducer can comprise an imaging element
1012 having a surface 1028 configured for focusing, defo-
cusing or planar energy distribution, with therapy elements
1014 including a stepped-configuration lens configured for
focusing, defocusing, or planar energy distribution.

In accordance with various exemplary embodiments of
the present invention, transducer 404 may be configured to
provide one, two and/or three-dimensional treatment appli-
cations for focusing acoustic energy to one or more regions
of interest. For example, as discussed above, transducer 404
can be suitably diced to form a one-dimensional array, e.g.,
transducer 602 comprising a single array of sub-transduction
elements.
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In accordance with another exemplary embodiment,
transducer 404 may be suitably diced in two-dimensions to
form a two-dimensional array. For example, with reference
to FIG. 9, an exemplary two-dimensional array 900 can be
suitably diced into a plurality of two-dimensional portions
902. Two-dimensional portions 902 can be suitably config-
ured to focus on the treatment region at a certain depth, and
thus provide respective slices 904, 907 of the treatment
region. As a result, the two-dimensional array 900 can
provide a two-dimensional slicing of the image place of a
treatment region, thus providing two-dimensional treatment.

In accordance with another exemplary embodiment,
transducer 404 may be suitably configured to provide three-
dimensional treatment. For example, to provide three-di-
mensional treatment of a region of interest, with reference
again to FIG. 1, a three-dimensional system can comprise a
transducer within probe 104 configured with an adaptive
algorithm, such as, for example, one utilizing three-dimen-
sional graphic software, contained in a control system, such
as control system 102. The adaptive algorithm is suitably
configured to receive two-dimensional imaging, temperature
and/or treatment or other tissue parameter information relat-
ing to the region of interest, process the received informa-
tion, and then provide corresponding three-dimensional
imaging, temperature and/or treatment information.

In accordance with an exemplary embodiment, with ref-
erence again to FIG. 9, an exemplary three-dimensional
system can comprise a two-dimensional array 900 config-
ured with an adaptive algorithm to suitably receive 904
slices from different image planes of the treatment region,
process the received information, and then provide volu-
metric information 906, e.g., three-dimensional imaging,
temperature and/or treatment information. Moreover, after
processing the received information with the adaptive algo-
rithm, the two-dimensional array 900 may suitably provide
therapeutic heating to the volumetric region 906 as desired.

In accordance with other exemplary embodiments, rather
than utilizing an adaptive algorithm, such as three-dimen-
sional software, to provide three-dimensional imaging and/
or temperature information, an exemplary three-dimensional
system can comprise a single transducer 404 configured
within a probe arrangement to operate from various rota-
tional and/or translational positions relative to a target
region.

To further illustrate the various structures for transducer
404, with reference to FIG. 7, ultrasound therapy transducer
700 can be configured for a single focus, an array of foci, a
locus of foci, a line focus, and/or diffraction patterns.
Transducer 700 can also comprise single elements, multiple
elements, annular arrays, one-, two-, or three-dimensional
arrays, broadband transducers, and/or combinations thereof,
with or without lenses, acoustic components, and mechani-
cal and/or electronic focusing. Transducers configured as
spherically focused single elements 702, annular arrays 704,
annular arrays with damped regions 706, line focused single
elements 708, 1-0 linear arrays 710, 1-0 curvilinear arrays in
concave or convex form, with or without elevation focusing,
2-D arrays, and 3-D spatial arrangements of transducers may
be used to perform therapy and/or imaging and acoustic
monitoring functions. For any transducer configuration,
focusing and/or defocusing may be in one plane or two
planes via mechanical focus 720, convex lens 722, concave
lens 724, compound or multiple lenses 726, planar form 728,
or stepped form, such as illustrated in FIG. 10F. Any
transducer or combination of transducers may be utilized for
treatment. For example, an annular transducer may be used
with an outer portion dedicated to therapy and the inner disk
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dedicated to broadband imaging wherein such imaging
transducer and therapy transducer have different acoustic
lenses and design, such as illustrated in FIG. 1 OC-1 OF.

Moreover, such transduction elements 700 may comprise
a piezoelectrically active material, such as lead zirconante
titanate (PZT), or any other piezoelectrically active material,
such as a piezoelectric ceramic, crystal, plastic, and/or
composite materials, as well as lithium niobate, lead titanate,
barium titanate, and/or lead metaniobate. Transduction ele-
ments 700 may also comprise one or more matching layers
configured along with the piezoelectrically active material.
In addition to or instead of piezoelectrically active material,
transduction elements 700 can comprise any other materials
configured for generating radiation and/or acoustical energy.
A means of transferring energy to and from the transducer to
the region of interest is provided.

In accordance with another exemplary embodiment, with
reference to FIG. 12, an exemplary treatment system 200
can be configured with and/or combined with various aux-
iliary systems to provide additional functions. For example,
an exemplary treatment system 1200 for treating a region of
interest 1202 can comprise a control system 1206, a probe
1204, and a display 1208. Treatment system 1200 further
comprises an auxiliary imaging modality 1272 and/or aux-
iliary monitoring modality 1274 may be based upon at least
one of photography and other visual optical methods, mag-
netic resonance imaging (MRI), computed tomography
(CT), optical coherence tomography (OCT), electromag-
netic, microwave, or radio frequency (RF) methods, positron
emission tomography (PET), infrared, ultrasound, acoustic,
or any other suitable method of visualization, localization, or
monitoring of epidermal, superficial dermal, mid-dermal
and deep dermal components within the region-of-interest
1202, including imaging/monitoring enhancements. Such
imaging/monitoring enhancement for ultrasound imaging
via probe 1204 and control system 1206 could comprise
M-mode, persistence, filtering, color, Doppler, and harmonic
imaging among others; furthermore an ultrasound treatment
system 1270, as a primary source of treatment, may be
combined with a secondary source of treatment 1276,
including radio frequency (RF), intense pulsed light (IPL),
laser, infrared laser, microwave, or any other suitable energy
source.

In accordance with another exemplary embodiment, with
reference to FIG. 13, treatment composed of imaging, moni-
toring, and/or therapy to a region of interest 1302 and/or
1308 may be aided, augmented, and/or delivered with pas-
sive or active devices 1304 and/or 1306 within the oral
and/or nasal cavity, respectively. For example, if passive or
active device 1304 and/or 1306 are second transducers or
acoustic reflectors acoustically coupled to the mucous mem-
branes it is possible to obtain through transmission, tomo-
graphic, or round-trip acoustic waves which are useful for
treatment monitoring, such as in measuring acoustic speed
of sound and attenuation, which are temperature dependent;
furthermore such transducers could be used to treat and/or
image. In addition an active, passive, or active/passive
object 1304 and/or 1306 may be used to flatten the skin,
and/or may be used as an imaging grid, marker, or beacon,
to aid determination of position. A passive or active device
1304 and/or 1306 may also be used to aid cooling or
temperature control. Natural air in the oral cavity and/or
nasal cavity may also be used as passive device 1304 and/or
1306 whereby it may be utilized to as an acoustic reflector
to aid thickness measurement and monitoring function.

The present invention has been described above with
reference to various exemplary embodiments. However,

20

25

30

40

45

60

65

14

those skilled in the art will recognize that changes and
modifications may be made to the exemplary embodiments
without departing from the scope of the present invention.
For example, the various operational steps, as well as the
components for carrying out the operational steps, may be
implemented in alternate ways depending upon the particu-
lar application or in consideration of any number of cost
functions associated with the operation of the system, e.g.,
various of the steps may be deleted, modified, or combined
with other steps. These and other changes or modifications
are intended to be included within the scope of the present
invention, as set forth in the following claims.

What is claimed is:

1. An ultrasound system for treatment of skin laxity, the
system comprising:

an ultrasound probe comprising a housing, wherein the

housing comprises a motion mechanism and an ultra-
sound transducer,

wherein the ultrasound transducer comprises a therapy

component and an imaging component,

wherein the therapy component consists of:

a single active spherically-focused ultrasound therapy
element,

wherein the ultrasound therapy element is configured to
provide a single mechanical focus,

wherein the single mechanical focus is configured to
provide ultrasound therapy energy in the form of a
single thermal focus in a tissue at a depth below a
skin surface,

wherein the depth is a single, fixed depth in a range of
up to 5 mm below the skin surface to treat the tissue,

wherein the tissue comprises a combination of any of the

group consisting of: an epidermal tissue, a superficial

dermal tissue, a mid-dermal tissue, a deep dermal

tissue, a muscle tissue, and an adipose tissue,

wherein the single thermal focus is formed without
electronic focusing and without a lens,

wherein the imaging component comprises an ultrasound

imaging element,
wherein the ultrasound imaging element is configured for
imaging a region of interest under the skin surface,
wherein the region of interest comprises the tissue,

wherein a portion of the ultrasound probe is configured
for acoustic coupling to a skin surface;

a control system connected to the motion mechanism and

the ultrasound therapy element;

a display configured to display an image of the region of

interest;

an input device connected to the control system; and

a power supply connected to the control system;

wherein the ultrasound imaging element is connected to

the display and the control system,

wherein the ultrasound therapy element is configured for

delivery of energy at a temperature sufficient to shrink
at least a portion of the tissue at the depth under the skin
surface,

wherein the ultrasound therapy element is connected to

the motion mechanism,

wherein the motion mechanism moves the ultrasound

therapy element to form a plurality of thermal lesions
at the depth for shrinking at least a portion of the tissue
for reducing the appearance of skin laxity.

2. The system of claim 1, wherein the imaging element is
configured for imaging at a frequency range of 2 MHz to 75
MHz,

wherein the imaging component and the therapy compo-

nent are co-housed within the ultrasound probe,
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wherein the ultrasound therapy element is configured to
increase the temperature of the tissue in the region of
interest to greater than 60° C.
3. The system of claim 1, further comprising a monitoring
system,
wherein the monitoring system is configured to monitor a
treatment parameter, wherein the treatment parameter
measured comprises a temperature of the tissue below
the skin surface,
wherein the housing further comprises a temperature
monitoring sensor,
wherein the therapy element is a single element that
delivers ultrasound energy at a frequency of between 2
MHz to 25 MHz.
4. The system of claim 1, wherein the housing contains a
temperature monitoring sensor,
wherein the control system comprises a processor, soft-
ware, and a communication device,
wherein the ultrasound probe is connected to the control
system via a cable,
wherein the processor relays data from the temperature
monitoring sensor via the communication device.
5. The system of claim 1,
wherein the motion mechanism comprises an encoder and
the ultrasound energy is configured to deliver an energy
level for causing at least one of shrinking collagen and
denaturing the tissue in the region of interest under a
wrinkle,
wherein the therapy element delivers ultrasound energy at
a frequency of between 2 MHz to 25 MHz.
6. The system of claim 1, wherein the control system
comprises a spatial control and a temporal control,
wherein the spatial control and the temporal control are
configured for controlling the delivery of energy at a
temperature sufficient to cause denaturation of at least
the portion of the tissue at the depth under the skin
surface,
wherein the spatial control and the temporal control are
configured for controlling the delivery of energy at a
frequency of between 2 MHz to 25 MHz.
7. An ultrasound system for treatment of skin laxity, the
system comprising:
an ultrasound probe configured for delivery of an ultra-
sound energy at a temperature sufficient to heat at least
a portion of a tissue at a depth under a skin surface,
wherein the tissue comprises a combination of any of the
group consisting of: an epidermal tissue, a superficial
dermal tissue, a mid-dermal tissue, a deep dermal
tissue, a muscle tissue, and an adipose tissue; and
a control system;
wherein the ultrasound probe comprises a housing,
wherein the housing comprises a motion mechanism
and an ultrasound transducer,
wherein the ultrasound transducer comprises a therapy
component and an imaging component,
wherein the therapy component consists of:
a single active ultrasound therapy element,
wherein the single active ultrasound therapy element is
configured to provide a single, spherically-focused
mechanical focus,
wherein the single, spherically-focused mechanical
focus is configured to provide ultrasound therapy
energy in the form of a single thermal focus in the
tissue at a depth below a skin surface,
wherein the single thermal focus is formed without
electronic focusing and without a lens,
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wherein the imaging component comprises an ultrasound

imaging element,

wherein the ultrasound therapy element is in communi-

cation with the control system,

wherein the motion mechanism is in communication with

the control system,

wherein the ultrasound therapy element is configured for

delivery of the ultrasound energy at the temperature
sufficient to heat the at least a portion of the tissue at the
depth under the skin surface,

wherein the ultrasound therapy element is connected to a

portion of the motion mechanism,

wherein the motion mechanism moves the ultrasound

therapy element to form a plurality of thermal lesions
at the depth for reducing the appearance of skin laxity.

8. The system of claim 7,

wherein the ultrasound imaging element is configured for

imaging a region of interest under the skin surface,
wherein the region of interest comprises the tissue,
wherein the skin surface comprises a wrinkle.

9. The system of claim 7, further comprising a monitoring
system,

wherein the monitoring system is configured to monitor a

treatment parameter, wherein the treatment parameter
measured comprises a temperature of the tissue below
the skin surface,

wherein the housing further comprises a temperature

monitoring sensor,

wherein the ultrasound therapy element delivers ultra-

sound energy at a frequency of between 2 MHz to 75
MHz.

10. The system of claim 7, wherein the ultrasound probe
is connected to the control system via a cable, and wherein
the control system comprises:

a communication device;

a motion mechanism control;

a processor, software, an input device, and a power

supply.

11. The system of claim 7,

wherein the ultrasound therapy element is a single ele-

ment that delivers ultrasound energy at a frequency of
between 2 MHz to 25 MHz,

wherein the ultrasound therapy element is configured to

increase the temperature of the tissue in the region of
interest to greater than 60° C.

12. An ultrasound system for treatment of skin laxity, the
system comprising:

an ultrasound probe comprising a housing, wherein the

housing comprises a motion mechanism and an ultra-
sound transducer,

wherein the ultrasound transducer comprises a therapy

component and an imaging component,

wherein the therapy component consists of:

a single active spherically-focused ultrasound therapy
element,

wherein the ultrasound therapy element is configured to
provide a single mechanical focus,

wherein the single mechanical focus is configured to
provide ultrasound therapy energy in the form of a
single thermal focus in a tissue at a depth below a
skin surface,

wherein the depth is up to 5 mm below the skin surface,

wherein the tissue comprises a combination of any of
the group consisting of: an epidermal tissue, a super-
ficial dermal tissue, a mid-dermal tissue, a deep
dermal tissue, an adipose tissue, and a muscle tissue,
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wherein the single thermal focus is formed without
electronic focusing and without a lens,

wherein the imaging component comprises an ultrasound
imaging element,

a control system comprising a processor and power sup-
ply; and

a display,

wherein the ultrasound imaging element is in communi-
cation with the display,
wherein the ultrasound imaging element is configured

for imaging the tissue,

wherein the display is configured to display an image of
the tissue,

wherein the ultrasound therapy element is in communi-
cation with the control system,

wherein the ultrasound therapy element is configured for
delivery of energy at a temperature sufficient to dena-
ture at least a portion of the tissue in the region of
interest at a depth under the skin surface,

wherein the ultrasound therapy element is connected to a
portion of the motion mechanism,

wherein the motion mechanism is in communication with
the control system,

wherein the motion mechanism moves the ultrasound
therapy element to form a plurality of thermal lesions
at the depth for reducing skin laxity.

13. The system of claim 12,

wherein the motion mechanism comprises an encoder,
wherein the ultrasound probe is connected to the con-
trol system via a cable,

wherein the imaging component and the ultrasound
therapy component are co-housed within the ultrasound
probe,

wherein the skin surface comprises a wrinkle.

14. The system of claim 12, further comprising an acous-

tic coupler between the ultrasound probe and the skin
surface,

wherein the therapy element is a single element that
delivers ultrasound energy at a frequency of between 2
MHz to 25 MHz,
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wherein the housing further comprises a temperature
monitoring sensor.

15. The system of claim 12,

wherein the ultrasound imaging element and the ultra-
sound therapy element are in a combined transducer,

wherein the ultrasound therapy element is configured to
increase the temperature of the tissue in the region of
interest to greater than 60° C.

16. The system of claim 12,

wherein the ultrasound imaging element is separate from,
and co-housed with, the ultrasound therapy element in
the probe.

17. The system of claim 12, further comprising a moni-

toring system,

wherein the monitoring system is configured to monitor a
treatment parameter, wherein the treatment parameter
measured comprises a temperature of the tissue below
the skin surface,

wherein the housing further comprises a temperature
monitoring sensor.

18. The system of claim 12,

wherein the motion mechanism is a linear motion mecha-
nism for linear movement of the ultrasound therapy
element to form a plurality of thermal lesions along a
line at the depth in the region of interest.

19. The system of claim 12,

wherein the motion mechanism is configured for any one
of the group consisting of linear, rotational, and vari-
able movement of the ultrasound therapy element.

20. The system of claim 12,

wherein the motion mechanism comprises an encoder for
monitoring a position of the ultrasound therapy element
on the motion mechanism in a housing of the probe,

wherein the therapy element is a single element that
delivers ultrasound energy at a frequency of between 2
MHz to 25 MHz,

wherein the ultrasound therapy element is configured to
deliver the energy at the depth below the skin surface.
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